Relations and Functions
February 18, 2026 admin
1. Relations
Let $A, B$ be sets. A relation $R$ from $A$ to $B$ is a subset of the Cartesian product:
$R \subseteq A \times B$
If $(a,b) \in R$, we write $aRb$.
Domain and Range
Domain: $\text{Dom}(R)=\{a\in A:\exists b\in B,\ (a,b)\in R\}$
Range: $\text{Ran}(R)=\{b\in B:\exists a\in A,\ (a,b)\in R\}$
Properties of Relations (on a set $A$)
- Reflexive: $\forall a\in A,\ aRa$
- Symmetric: $aRb \Rightarrow bRa$
- Antisymmetric: $aRb \text{ and } bRa \Rightarrow a=b$
- Transitive: $aRb \text{ and } bRc \Rightarrow aRc$
2. Order Relation
A relation $\le$ on $A$ is a partial order if it is:
- Reflexive
- Antisymmetric
- Transitive
A totally ordered set satisfies additionally:
$\forall a,b\in A,\ a\le b \text{ or } b\le a$
3. Equivalence Relations
A relation $\sim$ on $A$ is an equivalence relation if it is:
- Reflexive
- Symmetric
- Transitive
Equivalence Class
$[a]=\{x\in A: x\sim a\}$
The set of all equivalence classes forms a partition of $A$.
4. Functions
A function $f:A\to B$ is a relation such that:
$\forall a\in A,\ \exists! b\in B \text{ with } f(a)=b$
Image and Preimage
For $S\subseteq A$:
$f(S)=\{f(x):x\in S\}$
For $T\subseteq B$:
$f^{-1}(T)=\{x\in A: f(x)\in T\}$
5. Injective, Surjective, Bijective
- Injective (one-to-one): $f(x_1)=f(x_2)\Rightarrow x_1=x_2$
- Surjective (onto): $\forall y\in B,\ \exists x\in A,\ f(x)=y$
- Bijective: Injective and Surjective
6. Inverse Function
If $f:A\to B$ is bijective, then there exists:
$f^{-1}:B\to A$
such that:
$f^{-1}(f(x))=x,\quad f(f^{-1}(y))=y$
Real Number System
1. Field Properties of $\mathbb{R}$
For all $a,b,c\in\mathbb{R}$:
- Closure under $+$ and $\cdot$
- Associativity: $(a+b)+c=a+(b+c)$
- Commutativity: $a+b=b+a$, $ab=ba$
- Distributive: $a(b+c)=ab+ac$
- Additive identity: $a+0=a$
- Multiplicative identity: $a\cdot1=a$
- Additive inverse: $a+(-a)=0$
- Multiplicative inverse: $a\ne0 \Rightarrow a\cdot a^{-1}=1$
2. Order Properties
- Trichotomy: Exactly one of $ab$
- If $a
- $a
- $a0 \Rightarrow ac
- $a
3. Natural Numbers
$\mathbb{N}=\{1,2,3,\dots\}$
Principle of Mathematical Induction:
- Base step
- If $P(n)\Rightarrow P(n+1)$, then $P(n)$ holds for all $n\in\mathbb{N}$
4. Integers and Rational Numbers
$\mathbb{Z}=\{\dots,-2,-1,0,1,2,\dots\}$
$\mathbb{Q}=\left\{\frac{p}{q}:p,q\in\mathbb{Z},\ q\ne0\right\}$
5. Absolute Value
$|x|= \begin{cases} x, & x\ge0\\ -x, & x<0 \end{cases}$
Properties
- $|x|\ge0$
- $|xy|=|x||y|$
- $|x+y|\le |x|+|y|$ (Triangle inequality)
- $||x|-|y||\le |x-y|$
6. Basic Inequalities
Inequality of Means
For $a,b>0$:
$\frac{a+b}{2}\ge\sqrt{ab}$
Power Inequality
If $0<a<b$ and $n\in\mathbb{N}$, then
$$a^n < b^n$$
Cauchy–Schwarz Inequality
For $x_i,y_i\in\mathbb{R}$:
$\left(\sum_{i=1}^n x_i y_i\right)^2 \le \left(\sum_{i=1}^n x_i^2\right) \left(\sum_{i=1}^n y_i^2\right)$
Chebyshev’s Inequality
If sequences are similarly ordered:
$\frac{1}{n}\sum_{i=1}^n a_i b_i \ge \left(\frac{1}{n}\sum_{i=1}^n a_i\right) \left(\frac{1}{n}\sum_{i=1}^n b_i\right)$
Weierstrass Inequality
For $x>-1$ and $n\in\mathbb{N}$:
$(1+x)^n \ge 1+nx$
Mathematics Tagged Relations & Functions
